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Digital integrated circuits  



Logic families of digital integrated circuits  

• Many different logic families of digital integrated circuits have been introduced 
commercially. The following are the most popular: 
TTL transistor–transistor logic; 
ECL emitter‐coupled logic; 
MOS metal‐oxide semiconductor; 
CMOS complementary metal‐oxide semiconductor. 

• TTL, 50 yıldır kullanımda olan ve standart olarak kabul edilen bir lojik ailesidir. 
• ECL, yüksek hızlı çalışma gerektiren sistemlerde bir avantaja sahiptir. 
• MOS, yüksek bileşenli yoğunluğa ihtiyaç duyan devreler için uygundur ve CMOS, 

dijital kameralar, kişisel medya oynatıcılar ve diğer taşınabilir taşınabilir aygıtlar gibi 
düşük güç tüketimi gerektiren sistemlerde tercih edilir. 

• Düşük güç tüketimi VLSI tasarımı için gereklidir; Bu nedenle, TTL ve ECL kullanımda 
düşmeye devam ederken CMOS, baskın mantık ailesi haline geldi 



Logic Chips 

• Integration levels 
– SSI (small scale integration) 

• Introduced in late 1960s 
• 1-10 gates (previous examples) 

– MSI (medium scale integration) 
• Introduced in late 1960s 
• 10-100 gates 

– LSI (large scale integration) 
• Introduced in early 1970s 
• 100-10,000 gates 

– VLSI (very large scale integration) 
• Introduced in late 1970s 
• More than 10,000 gates 





TTL 

• TTL tümdevrelerin besleme gerilimi 
+5 V dur. Bu aileye ait bütün 
elemanların lojik giriş seviyeleri 
lojik çıkış seviyeleri ile aynıdır. 
Örneğin TTL teknolojisi ile üretilmiş 
7404 entegresinde giriş gerilimi0 
V−0.8 V arasındaysa Lojik 0; 2.0 
V−5.0 V arasında ise Lojik 
1seviyesindedir. 



Propagasyon gecikmesi 

• Bir elemanın girişinde oluşan bir işaret değişiminin 
çıkışta görülmesi için geçen süreye “propagasyon 
gecikmesi” denir. Bir NOT lojik kapısının girişine 
uygulanan 0−1−0 geçişli bir işarete karşılık çıkıĢında 
oluşan 1−0−1 Ģeklindeki işaret değişimi arasındaki 
gecikmeler değerlendirildiğinde şu sonuçla 
karşılaşılır. Lojik kapının 1-0 geçiĢine (15 ns‟ lik 
propagasyon gecikmesi) oranla 0-1 geçişinde (20 ns‟ 
lik propagasyon gecikmesi) daha büyük bir gecikme 
söz konusudur. TTL elemanların güç harcama miktarı 
10 mW civarındadır. Fakat tümdevre içindeki 
kapıların kullanımları güç tüketimini etkiler. 
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Logic Gates: The NAND Gate 

• The NAND Gate 
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Top View of a TTL 74LS family  74LS00 Quad 2-input NAND Gate IC Package 

• NAND gate is self-sufficient (can build any logic circuit with it). 

• Can be used to implement AND/OR/NOT. 

• Implementing an inverter using NAND gate: 
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Logic Gates: The NOR Gate 

• The NOR Gate 
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Top View of a TTL 74LS family  74LS02 Quad 2-input NOR Gate IC Package 

• NOR gate is also  self-sufficient (can build any logic circuit with it). 

• Can be used to implement AND/OR/NOT. 

• Implementing an inverter using NOR gate: 
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Logic Gates: The XOR Gate 
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• The XOR Gate 
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Top View of a TTL 74LS family  74LS86 Quad 2-input XOR Gate IC Package 



CMOS Logic Gates 



CMOS tümdevre özellikleri 
• CMOS tümdevrelerin besleme gerilimi +10 V 

dur.  

• CMOS teknolojisi ile üretilmiş entegreslerde 
giriş gerilimi 0 V−3.0 V arasındaysa Lojik 0, 7.0 
V−10.0 V arasında ise Lojik 1seviyesindedir. 
Ayrıca gürültü filtreleme konusunda CMOS 
entegrelerde TTL’lerden daha iyidir. 

• Standart CMOS tümdevrelerde propagasyon 
gecikmesi 25−100 ns arasında değiĢir. Fakat, 
yeni nesil yüksek hızlı CMOS devrelerde (HC 
serisi) bu gecikme 8 ns mertebesine 
düĢmektedir. CMOS elemanların güç harcama 
miktarı 0.01−1 mW mertebesindedir. 



CMOS LOGIC GATES 

 Thus an nMOS transistor passes a strong 0 and a weak 1. 

 A similar analysis (for pMOS, gate to source voltage has to be <  the (negative) threhold voltage VT for transistor to conduct) shows that a pMOS 
transistor passes a strong 1 and a weak 0. 

 This is the basis of CMOS logic gates, where pMOS transistors are used in the “top” n/w connected to Vdd to conduct a strong or good 1, and 
nMOS transistors are used in the “bottom” or complementary n/w to conduct a strong 0. 

 Also, can Combine the two to make a CMOS pass gate, called a transmission gate,  which will pass a strong 0 and a strong 1.  



• Even though pMOS conducts a good 1, a long series of pMOS transistors for a many-input gate can lead to excessive 

resistance R and thus a large output delay RC, where C is the load capacitance driven by the gate. 

•Example: Consider an 8-variable NOR function f = (x7+x6+x5+x4+x3+x2+x1+x0)’. Its implementation using a single 

n/w is given below; we assume that a pMOS transistor has an on-resistance of Rp. Note that f = x7’x6’ ….. x1’x0’ 

x7 x6 x5 x4 x3 x2 x1 x0 

Corresponding compl. n/w (f’=x7+x6+….+x1+x0) 

Vdd=3v 

GND 

f 

Output delay = 8RpC 

Problem w/ Large Switching Networks 

R = 8Rp 



Problem with Large Switching Networks (contd) 

• The solution for avoiding such excessive delay is using a number of smaller switching n/ws over “parallel” paths [otherwise, if all the 
smaller n/ws are on one sequential path, there will be no or little delay improvement]. 

• Thus we need to break down a large function (function w/ many variables—generally > 6) into smaller ones that can each be 
implemented using smaller n/ws. This happens to a large extent when a function is represented as an SOP or POS expression (it is lready 
broken down into ANDs and ORs) but not always (e.g., an AND or OR term may have a large # of vars). 

•  E.g., the 8-i/p NOR function f can be decomposed as (and then impl as below): 

–  f = [(x7+x6+x5+x4) + (x3+x2+x1+x0)]’ = [(x7’x6’x5’x4’)’ + (x3’x2’x1’x0’)’]’ = NOR(NAND(x7’,x6’,x5’,x4’), NAND(x3’,x2’,x1’,x0’)). 

–  Alternatively, f = (x7+..+ x4)’ (x3+..+x0)’ = AND(NOR(x7,..,x4), NOR(x3,..x0)) = NOT(NAND(NOR(x7,..,x4), NOR(x3,..x0))) 



Problem with Large Switching Networks (contd) 

• The 8-i/p NOR function f can be decomposed as (and then impl as below): 

–  f = [(x7+x6+x5+x4) + (x3+x2+x1+x0)]’ = [(x7’x6’x5’x4’)’ + (x3’x2’x1’x0’)’]’ = NOR(NAND(x7’,x6’,x5’,x4’), NAND(x3’,x2’,x1’,x0’)). 
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Note: Delay of a circuit = delay of its longest-delay path from input [i/p] to output [o/p] 
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Problem with Large Switching Networks (contd) 

• These small switching networks are called gates 

• Thus need to use small to medium-size (<= 4 inputs) gates to implement large logic functions 

0 

strong 1 

strong 1 

Vdd 
0 

0 

A cascade or series of NAND/NOR gates will produce strong 1’s as well as strong 0’s as well as smaller delay than a large switching n/w for the 

corresponding logic expression.  
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X 



Circuit Delay—Definition & Computation 

• Assume R is the on-resistance of a single nMOS or pMOS transistor, and C its i/p or gate capacitance. 

• Then the worst-case “top” network resistance Rtop of a gate gi is the k*R, where k = max. # of transistors in series in the top n/w of gi. Similarly, for the resistance Rbot of the 
“bottom” or complementary n/w of gi. 

• If CL is the capacitive load seen by a gate gi (generally = the sum of gate capacitances C of the transistors of the gate(s) that gi drives), then the delay in gi driving its output from 
0  1 is Rtop* CL  and the delay in gi driving its output from 1  0 is Rbot* CL . In general, we define gate res. Rg = max(Rtop , Rbot), and the delay of its output signal as Rg* CL  

• Example: For the 2 i/p NAND gate in Fig. 1, Rtop = R (note that in the worst-case only 1 pMOS transistor is on, so the res. then is R, and *not* R/2), Rbot = 2R. Thus Rg = 2R, and 
the gate’s output delay = Rg*CL = 2R*CL . If the gate is driving a 2-input NAND/NOR/AND/OR gate, then = CL= 2C. 

• The delay of a path = S (output delays of gates on the path). The delay of the path shown in Fig. 2 = [d(g1) + Rg(g1)*CL(g2)] + [d(g2) + Rg(g2)*CL(g3)] + [d(g3) + Rg(g3)*CL(g4)] + 
[d(g4) + Rg(g4)*CL(op)],  where CL(op) is the load at the output of the path and d(gi) is the “intrinsic” delay of a gate gi to switch from off to on.  

Fig. 1: CMOS realization of a 2-i/p NAND gate  Fig. 2: A path of a circuit and its delay 
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A circuit path (g1g2g3g4output)  



Circuit Delay (cont’d) 

• The delay of a path = S (output delays of gates on the path). The delay of the path shown in Fig. 2 = [d(g1) + Rg(g1)*CL(g2)] + [d(g2) + Rg(g2)*CL(g3)] + [d(g3) + Rg(g3)*CL(g4)] + 
[d(g4) + Rg(g4)*CL(op)],  where CL(op) is the load at the output of the path and d(gi) is the “intrinsic” delay of a gate gi to switch from off to on.  

• Thus, assumimg that the d(gi) for all 2-i/p gates is the same and = d(g), the path delay = 4*d(g) + 2R*2C + 2R*2C + 2R*2C + 2R* CL(op) =  4*d(g) + 12RC + 2R* CL(op) = 4*d(g) + 
16RC if CL(op) = 2C. 

• If we ignore the d(gi)’s (which are typically small compared to the RC delays), the rest of the delay is the RC delay, which for this ex. = 16RC = 4*(2R*2C) 

• The 2C part of the delay expression will remain unchanged (for nand/nor/and/or gates) irrespective if the gate sizes # of i/ps). However the 2R part in each term will change to 
kR where k = # of i/ps (for nand/nor/and/or gates) 

•  If the gates in Fig. 2 were all 3-i/p gates, the RC delay expression will be 4*(3R*2C) = 24RC = (3/2)*(16RC) (as the # of i/ps change from 2 to 3, delay increases proportionately 
by a factor of 3/2). 

•   Thus the delay is proportional to the sum of the # of each inputs along a path (8 for the path w/ 2-i/p gates and 12 if the gates are 3 i/ps). 

• Thus a simple delay model we will use is that the delay of a gate w/ k i/ps = k, and add up this simplified gate delay units along a path to get the path’s delay. 

• The delay of a circuit is the delay in the longest (max-delay) path of the circuit from primary inputs to an output 

Fig. 1: CMOS realization of a 2-i/p NAND gate  Fig. 2: A path of a circuit and its delay 
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Determining Circuit Delay 

(intrinsic gate delay) + RC delay at gi’s o/p 

Assume that the intrinsic delay d(gi) of each gate except 
xor/xnor = 1.5 ns, that of xor/xnor gates is 3.5 ns, and 
each RC delay between a driving gate and driven i/p is 
2.5 ns. Thus i/p -> o/p sink  delay for each gate except 
xor/xnor = 4 ns, while that for xor/xnor is 6 ns 
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